Shear dynamics of hydration layers.
نویسندگان
چکیده
Molecular dynamics (MD) simulations have been performed to investigate the shear dynamics of hydration layers of the thickness of D=0.61-2.44 nm confined between two mica surfaces. Emphases are placed on the external shear response and internal relaxation properties of aqueous films. For D=0.92-2.44 nm liquid phase, the shear responses are fluidic and similar to those observed in surface force balance experiments [U. Raviv and J. Klein, Science 297, 1540 (2002)]. However, for the bilayer ice (D=0.61 nm) [Y. S. Leng and P. T. Cummings, J. Chem. Phys. 124, 74711 (2006)] significant shear enhancement and shear thinning over a wide range of shear rates in MD regime are observed. The rotational relaxation time of water molecules in this bilayer ice is found to be as high as 0.017 ms (10(-5) s). Extrapolating the shear rate to the inverse of this longest relaxation time, we obtain a very high shear viscosity for the bilayer ice, which is also observed quite recently for D< or =0.6+/-0.3 nm hydration layers [H. Sakuma et al., Phys. Rev. Lett. 96, 46104 (2006)]. We further investigate the boundary slip of water molecules and hydrated K(+) ions and concluded that no-slip boundary condition should hold for aqueous salt solution under extreme confinement between hydrophilic mica surfaces, provided that the confined film is of Newtonian fluid.
منابع مشابه
Fluidity of hydration layers nanoconfined between mica surfaces.
We perform molecular dynamics simulations to investigate the shear dynamics of hydration water nanoconfined between two mica surfaces at 1 bar pressure and 298 K. Newtonian plateaus of shear viscosity comparable to the bulk value for different hydration layers D=0.92-2.44 nm are obtained. The origin of this persistent fluidity of the confined aqueous system is found to be closely associated wit...
متن کاملEstimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach
Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...
متن کامل5 Water solvation dynamics in the bulk and in the hydration layer of proteins and self-assemblies
Water solvation dynamics of polar species both in the bulk and in the hydration layers of proteins and self-organized assemblies have been discussed. Recent studies have revealed that while water solvation dynamics in the bulk is ultrafast and is mostly complete within 1 ps, this can slow down by as much as 2–3 orders of magnitude in the hydration layers of these systems. In this Report we disc...
متن کاملHYDRATION BEHAVIOUR AND ANTIOXIDISING EFFECT OF ALUMINIUM POWDER ADDED TO OXIDE- AND CARBON-BASED CASTABLES
Hydration behavior and antioxidising effect of aluminium (AI) powder has been investigated. Bayerite Al (OH) 3 product layers formed on Al in pure water at 25-45°C were porous, so the hydration rate, although very slow at 25°C, increased rapidly with increasing temperature from 25 to 45°C. On further increasing temperature from 45 to 95°C, initial hydration rate increased, but changed little ov...
متن کاملMolecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow
Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 10 شماره
صفحات -
تاریخ انتشار 2006